Intermittency in families of unimodal maps
نویسندگان
چکیده
We consider intermittency in one parameter families of unimodal maps, induced by saddle node and boundary crisis bifurcations. In these bifurcations a periodic orbit or a periodic interval, respectively, disappears to give rise to chaotic bursts. We prove asymptotic formulae for the frequency with which orbits visit the region previously occupied by the attractor. For this, we extend results of Pianigiani on conditionally invariant measures for the logistic family to more general families.
منابع مشابه
Intermittency at critical transitions and aging dynamics at edge of chaos
We recall that, at both the intermittency transitions and at the Feigenbaum attractor in unimodal maps of non-linearity of order ζ > 1, the dynamics rigorously obeys the Tsallis statistics. We account for the q-indices and the generalized Lyapunov coefficients λq that characterize the universality classes of the pitchfork and tangent bifurcations. We identify the Mori singularities in the Lyapu...
متن کاملIntermittency and Jakobson’s theorem near saddle-node bifurcations
We discuss one parameter families of unimodal maps, with negative Schwarzian derivative, unfolding a saddle-node bifurcation. We show that there is a parameter set of positive but not full Lebesgue density at the bifurcation, for which the maps exhibit absolutely continuous invariant measures which are supported on the largest possible interval. We prove that these measures converge weakly to a...
متن کاملStatistical Properties of Unimodal Maps: Smooth Families with Negative Schwarzian Derivative
We prove that there is a residual set of families of smooth or analytic unimodal maps with quadratic critical point and negative Schwarzian derivative such that almost every non-regular parameter is Collet-Eckmann with subexponential recurrence of the critical orbit. Those conditions lead to a detailed and robust statistical description of the dynamics. This proves the Palis conjecture in this ...
متن کاملSmooth Deformations of Piecewise Expanding Unimodal Maps
In the space of C piecewise expanding unimodal maps, k ≥ 2, we characterize the C smooth families of maps where the topological dynamics does not change (the “smooth deformations”) as the families tangent to a continuous distribution of codimension-one subspaces (the “horizontal” directions) in that space. Furthermore such codimension-one subspaces are defined as the kernels of an explicit clas...
متن کاملSome Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017